Improving the Prediction Accuracy of Multicriteria Collaborative Filtering by Combination Algorithms
نویسندگان
چکیده
This study focuses on developing the multicriteria collaborative filtering algorithm for improving the prediction accuracy. The approaches applied were user-item multirating matrix decomposition, the measurement of user similarity using cosine formula and multidimensional distance, individual criteria weight calculation, and rating prediction for the overall criteria by a combination approach. Results of the study show variation in multicriteria collaborative filtering algorithm, which was used for improving the document recommender system, with the two following characteristicsfirst, the rating prediction for four individual criteria using collaborative filtering algorithm by a cosine-based user similarity and a multidimensional distancebased user similarity; second, the rating prediction for the overall criteria using combination algorithms. Based on the results of testing, it can be concluded that a variety of models developed for the multicriteria collaborative filtering systems had much better prediction accuracy than for the classic collaborative filtering, which was characterized by the increasingly smaller values of Mean Absolute Error. The best accuracy was achieved by the multicriteria collaborative filtering system with multidimensional distance-based similarity. Keywords—Algorithm; multicriteria collaborative filtering; document; recommendation; system; similarity; multidimensional distance; decomposition; combination; prediction; accuracy
منابع مشابه
A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملUnison-CF: A Multiple-Component, Adaptive Collaborative Filtering System
In this paper we present the Unison-CF algorithm, which provides an efficient way to combine multiple collaborative filtering approaches, drawing advantages from each one of them. Each collaborative filtering approach is treated as a separate component, allowing the Unison-CF algorithm to be easily extended. We evaluate the Unison-CF algorithm by applying it on three existing filtering approach...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملAccuracy Improvement of Mood Disorders Prediction using a Combination of Data Mining and Meta-Heuristic Algorithms
Introduction: Since the delay or mistake in the diagnosis of mood disorders due to the similarity of their symptoms hinders effective treatment, this study aimed to accurately diagnose mood disorders including psychosis, autism, personality disorder, bipolar, depression, and schizophrenia, through modeling and analyzing patients' data. Method: Data collected in this applied developmental resear...
متن کاملThe Effect of Diversity Implementation on Precision in Multicriteria Collaborative Filtering
This research was triggered by the criticism on the emergence of homogeneity in recommendation within the collaborative filtering based recommender systems that put similarity as the main principle in the algorithm. To overcome the problem of homogeneity, this study proposes a novelty, i.e. the diversity of recommendations applied to the multicriteria collaborative filtering-based document reco...
متن کامل